
ACM International Collegiate Programming Contest
2004 East Central Regional Contest

Ashland University

Carnegie Mellon University
Sheridan University

University of Cincinnati
November 6, 2004

Sponsored by IBM

Rules:

1. There are eight questions to be completed in five hours.

2. All questions require you to read the test data from standard input and write results to standard
output. You cannot use files for input or output. Additional input and output specifications can
be found in the General Information Sheet.

3. The allowed programming languages are C, C++ and Java.

4. All programs will be re-compiled prior to testing with the judges’ data.

5. Non-standard libraries cannot be used in your solutions. The Standard Template Library (STL)
and C++ string libraries are allowed. The standard Java API is available, except for those
packages that are deemed dangerous by contest officials (e.g., that might generate a security
violation).

6. Programming style is not considered in this contest. You are free to code in whatever style you
prefer. Documentation is not required.

7. All communication with the judges will be handled by the PC2 environment.

8. Judges’ decisions are to be considered final. No cheating will be tolerated.



2004 East Central Regional Contest 1

Problem A: Alphacode

Alice and Bob need to send secret messages to each other and are discussing ways to encode their
messages:

Alice: “Let’s just use a very simple code: We’ll assign ‘A’ the code word 1, ‘B’ will be 2,
and so on down to ‘Z’ being assigned 26.”
Bob: “That’s a stupid code, Alice. Suppose I send you the word ‘BEAN’ encoded as 25114.
You could decode that in many different ways!”
Alice: “Sure you could, but what words would you get? Other than ‘BEAN’, you’d get
‘BEAAD’, ‘YAAD’, ‘YAN’, ‘YKD’ and ‘BEKD’. I think you would be able to figure out the
correct decoding. And why would you send me the word ‘BEAN’ anyway?”
Bob: “OK, maybe that’s a bad example, but I bet you that if you got a string of length 500
there would be tons of different decodings and with that many you would find at least two
different ones that would make sense.”
Alice: “How many different decodings?”
Bob: “Jillions!”

For some reason, Alice is still unconvinced by Bob’s argument, so she requires a program that will
determine how many decodings there can be for a given string using her code.

Input

Input will consist of multiple input sets. Each set will consist of a single line of digits representing a
valid encryption (for example, no line will begin with a 0). There will be no spaces between the digits.
An input line of ‘0’ will terminate the input and should not be processed

Output

For each input set, output the number of possible decodings for the input string. All answers will be
within the range of a long variable.

Sample Input

25114
1111111111
3333333333
0

Sample Output

6
89
1



2004 East Central Regional Contest 2

Problem B: Anti-prime Sequences

Given a sequence of consecutive integers n, n+1, n+2, . . . ,m, an anti-prime sequence is a rearrangement
of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For
example, if n = 1 and m = 10, one such anti-prime sequence is 1, 3, 5, 4, 2, 6, 9, 7, 8, 10. This is also the
lexicographically first such sequence.

We can extend the definition by defining a degree d anti-prime sequence as one where all consecutive
subsequences of length 2, 3, . . . , d sum to a composite number. The sequence above is a degree 2 anti-
prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically
first degree 3 anti-prime sequence for these numbers is 1, 3, 5, 4, 6, 2, 10, 8, 7, 9.

Input

Input will consist of multiple input sets. Each set will consist of three integers, n, m, and d on a single
line. The values of n, m and d will satisfy 1 ≤ n < m ≤ 1000, and 2 ≤ d ≤ 10. The line 0 0 0 will
indicate end of input and should not be processed.

Output

For each input set, output a single line consisting of a comma-separated list of integers forming a degree
d anti-prime sequence (do not insert any spaces and do not split the output over multiple lines). In the
case where more than one anti-prime sequence exists, print the lexicographically first one (i.e., output
the one with the lowest first value; in case of a tie, the lowest second value, etc.). In the case where no
anti-prime sequence exists, output

No anti-prime sequence exists.

Sample Input

1 10 2
1 10 3
1 10 5
40 60 7
0 0 0

Sample Output

1,3,5,4,2,6,9,7,8,10
1,3,5,4,6,2,10,8,7,9
No anti-prime sequence exists.
40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54



2004 East Central Regional Contest 3

Problem C: Hit or Miss

One very simple type of solitaire game known as “Hit or Miss” (also known as “Frustration,” “Harvest,”
“Roll-Call,” “Talkative”, and “Treize”) is played as follows: take a standard deck of 52 playing cards —
four sets of cards numbered 1 through 13 (suits do not matter in this game) which have been shufffled
— and start counting through the deck 1, 2, 3, . . . , and so on. When your count reaches 13, start over
at 1. Each time you count, look at the top card of the deck and do one of two things: if the number
you count matches the value of the top card, discard it from the deck; if it does not match it, move that
card to the bottom of the deck. You win the game if you are able to remove all cards from the deck
(which may take a very long time).

A version of this game can be devised for two or more players. The first player starts as before with a
52 card deck, while the other players have no cards initially. As the first player removes cards from her
deck, she gives them to the second player, who then starts playing the same game, starting at count
1. When that player gets a match, he passes his card to the third player, and so on. The last player
discards matches rather than passing them to player 1. All players who have cards to play with perform
the following 2-step cycle of moves in lockstep:

1. Each player says his or her current count value and checks for a match. If there is no match, the
top card is moved to the bottom of the deck; otherwise it is passed to the next player (or discarded
if this is the last player).

2. Each player except the first takes a passed card (if there is one) and places it at the bottom of his
or her deck.

These rules are repeated over and over until either the game is won (all the cards are discarded by the
last player) or an unwinnable position is reached. If any player ever runs out of cards, he waits until
he is passed a card and resumes his count from where he left off (e.g., if player 3 passes his last card
on a count of 7, he waits until he receives a card from player 2 and resumes his count with 8 at the
beginning of the next 2-step cycle).

Input

Input will consist of multiple input sets. The first line of the file will contain a single positive integer n
indicating the number of input sets in the file. Each input set will be a single line containing 53 integers:
the first integer will indicate the number of players in the game and the remaining 52 values will be the
initial layout of the cards in the deck, topmost card first. These values will all lie in the range 1 . . . 13,
and the number of players will lie in the range 1 . . . 10.

Output

For each input set, output the input set number (as shown below, starting with 1) and either the phrase
“unwinnable” or a list showing the last card discarded by each player. Use a single blank to separate
all outputs.



2004 East Central Regional Contest 4

Sample Input

NOTE: Each sample input set below is split across multiple lines in order to fit on the page – in the
actual file each set will be on a single line.

2
4 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

4 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1
2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1

Sample Output

Case 1: 13 13 13 13
Case 2: unwinnable



2004 East Central Regional Contest 5

Problem D: I Conduit!

Irv Kenneth Diggit works for a company that excavates trenches, digs holes and generally tears up
people’s yards. Irv’s job is to make sure that no underground pipe or cable is underneath where
excavation is planned. He has several different maps, one for each utility company, showing where their
conduits lie, and he needs to draw one large, consolidated map combining them all. One approach
would be to simply draw each of the smaller maps one at a time onto the large map. However, this
often wastes time, not to mention ink for the pen-plotter in the office, since in many cases portions
of the conduits overlap with each other (albeit at different depths underground). What Irv wants is a
way to determine the minimum number of line segments to draw given all the line segments from the
separate maps.

Input

Input will consist of multiple input sets. Each set will start with a single line containing a positive
integer n indicating the total number of line segments from all the smaller maps. Each of the next n
lines will contain a description of one segment in the format

x1 y1 x2 y2

where (x1, y1) are the coordinates of one endpoint and (x2, y2) are the coordinates of the other. Coordi-
nate values are floating point values in the range 0 . . . 1000 specified to at most two decimal places. The
maximum number of line segments will be 10000 and all segments will have non-zero length. Following
the last input set there will be a line containing a 0 indicating end of input; it should not be processed.

Output

For each input set, output on a single line the minimum number of line segments that need to be drawn
on the larger, consolidated map.

Sample Input

3
1.0 10.0 3.0 14.0
0.0 0.0 20.0 20.0
10.0 28.0 2.0 12.0
2
0.0 0.0 1.0 1.0
1.0 1.0 2.15 2.15
2
0.0 0.0 1.0 1.0
1.0 1.0 2.15 2.16
0

Sample Output

2
1
2



2004 East Central Regional Contest 6

Problem E: Roll Playing Games

Phil Kropotnik is a game maker, and one common problem he runs into is determining the set of dice to
use in a game. In many current games, non-traditional dice are often required, that is, dice with more
or fewer sides than the traditional 6-sided cube. Typically, Phil will pick random values for all but the
last die, then try to determine specific values to put on the last die so that certain sums can be rolled
with certain probabilities (actually, instead of dealing with probabilities, Phil just deals with the total
number of different ways a given sum can be obtained by rolling all the dice). Currently he makes this
determination by hand, but needless to say he would love to see this process automated. That is your
task.

For example, suppose Phil starts with a 4-sided die with face values 1, 10, 15, and 20 and he wishes
to determine how to label a 5-sided die so that there are a) 3 ways to obtain a sum of 2, b) 1 way to
obtain a sum of 3, c) 3 ways to obtain 11, d) 4 ways to obtain 16, and e)1 way to obtain 26. To get
these results he should label the faces of his 5-sided die with the values 1, 1, 1, 2, and 6. (For instance,
the sum 16 may be obtained as 10 + 6 or as 15 + 1, with three different “1” faces to choose from on the
second die, for a total of 4 different ways.)

Input

Input will consist of multiple input sets. Each input set will start with a single line containing an integer
n indicating the number of dice that are already specified. Each of the next n lines describes one of
these dice. Each of these lines will start with an integer f (indicating the number of faces on the die)
followed by f integers indicating the value of each face. The last line of each problem instance will have
the form

r m v1 c1 v2 c2 v3 c3 · · · vm cm

where r is the number of faces required on the unspecified die, m is the number of sums of interest,
v1, . . . , vm are these sums, and c1, . . . , cm are the counts of the desired number of different ways in which
to achieve each of the respective sums.

Input values will satisfy the following constraints: 1 ≤ n ≤ 20, 3 ≤ f ≤ 20, 1 ≤ m ≤ 10, and 4 ≤ r ≤ 6.
Values on the faces of all dice, both the specified ones and the unknown die, will be integers in the range
1 . . . 50, and values for the vi’s and ci’s are all non-negative and are strictly less than the maximum
value of a 32-bit signed integer.

The last input set is followed by a line containing a single 0; it should not be processed.

Output

For each input set, output a single line containing either the phrase “Final die face values are”
followed by the r face values in non-descending order, or the phrase “Impossible” if no die can be found
meeting the specifications of the problem. If there are multiple dice which will solve the problem, choose
the one whose lowest face value is the smallest; if there is still a tie, choose the one whose second-lowest
face value is smallest, etc.



2004 East Central Regional Contest 7

Sample Input

1
4 1 10 15 20
5 5 2 3 3 1 11 3 16 4 26 1
1
6 1 2 3 4 5 6
6 3 7 6 2 1 13 1
4
6 1 2 3 4 5 6
4 1 2 2 3
3 3 7 9
8 1 4 5 9 23 24 30 38
4 4 48 57 51 37 56 31 63 11
0

Sample Output

Final die face values are 1 1 1 2 6
Impossible
Final die face values are 3 7 9 9



2004 East Central Regional Contest 8

Problem F: Team Rankings

It’s preseason and the local newspaper wants to publish a preseason ranking of the teams in the local
amateur basketball league. The teams are the Ants, the Buckets, the Cats, the Dribblers, and the
Elephants. When Scoop McGee, sports editor of the paper, gets the rankings from the selected local
experts down at the hardware store, he’s dismayed to find that there doesn’t appear to be total agreement
and so he’s wondering what ranking to publish that would most accurately reflect the rankings he got
from the experts. He’s found that finding the median ranking from among all possible rankings is one
way to go.

The median ranking is computed as follows: Given any two rankings, for instance ACDBE and
ABCDE, the distance between the two rankings is defined as the total number of pairs of teams
that are given different relative orderings. In our example, the pair B, C is given a different ordering
by the two rankings. (The first ranking has C above B while the second ranking has the opposite.)
The only other pair that the two rankings disagree on is B, D; thus, the distance between these two
rankings is 2. The median ranking of a set of rankings is that ranking whose sum of distances to all the
given rankings is minimal. (Note we could have more than one median ranking.) The median ranking
may or may not be one of the given rankings.

Suppose there are 4 voters that have given the rankings: ABDCE, BACDE, ABCED and ACBDE.
Consider two candidate median rankings ABCDE and CDEAB. The sum of distances from the ranking
ABCDE to the four voted rankings is 1 + 1 + 1 + 1 = 4. We’ll call this sum the value of the ranking
ABCDE. The value of the ranking CDEAB is 7 + 7 + 7 + 5 = 26.

It turns out that ABCDE is in fact the median ranking with a value of 4.

Input

There will be multiple input sets. Input for each set is a positive integer n on a line by itself, followed
by n lines (n no more than 100), each containing a permutation of the letters A, B, C, D and E,
left-justified with no spaces. The final input set is followed by a line containing a 0, indicating end of
input.

Output

Output for each input set should be one line of the form:

ranking is the median ranking with value value.

Of course ranking should be replaced by the correct ranking and value with the correct value. If there
is more than one median ranking, you should output the one which comes first alphabetically.

Sample Input

4
ABDCE
BACDE
ABCED
ACBDE
0

Sample Output

ABCDE is the median ranking with value 4.



2004 East Central Regional Contest 9

Problem G: To and Fro

Mo and Larry have devised a way of encrypting messages. They first decide secretly on the number of
columns and write the message (letters only) down the columns, padding with extra random letters so
as to make a rectangular array of letters. For example, if the message is “There’s no place like home on
a snowy night” and there are five columns, Mo would write down

t o i o y
h p k n n
e l e a i
r a h s g
e c o n h
s e m o t
n l e w x

Note that Mo includes only letters and writes them all in lower case. In this example, Mo used the
character ‘x’ to pad the message out to make a rectangle, although he could have used any letter.

Mo then sends the message to Larry by writing the letters in each row, alternating left-to-right and
right-to-left. So, the above would be encrypted as

toioynnkpheleaigshareconhtomesnlewx

Your job is to recover for Larry the original message (along with any extra padding letters) from the
encrypted one.

Input

There will be multiple input sets. Input for each set will consist of two lines. The first line will contain
an integer in the range 2 . . . 20 indicating the number of columns used. The next line is a string of up
to 200 lower case letters. The last input set is followed by a line containing a single 0, indicating end of
input.

Output

Each input set should generate one line of output, giving the original plaintext message, with no spaces.

Sample Input

5
toioynnkpheleaigshareconhtomesnlewx
3
ttyohhieneesiaabss
0

Sample Output

theresnoplacelikehomeonasnowynightx
thisistheeasyoneab



2004 East Central Regional Contest 10

Problem H: Translations

Bob Roberts is in charge of performing translations of documents between various languages. To aid
him in this endeavor his bosses have provided him with translation files. These files come in twos — one
containing sample phrases in one of the languages and the other containing their translations into the
other language. However, some over-zealous underling, attempting to curry favor with the higher-ups
with his initiative, decided to alphabetically sort the contents of all of the files, losing the connections
between the phrases and their translations. Fortunately, the lists are comprehensive enough that the
original translations can be reconstructed from these sorted lists. Bob has found this is most usually
the case when the phrases all consist of two words. For example, given the following two lists:

Language 1 Phrases Language 2 Phrases
arlo zym bus seat
flub pleve bus stop

pleve dourm hot seat
pleve zym school bus

Bob is able to determine that arlo means hot, zym means seat, flub means school, pleve means bus, and
dourm means stop. After doing several of these reconstructions by hand, Bob has decided to automate
the process. And if Bob can do it, then so can you.

Input

Input will consist of multiple input sets. Each input set starts with a positive integer n, n ≤ 250,
indicating the number of two-word phrases in each language. This is followed by 2n lines, each containing
one two-word phrase: the first n lines are an alphabetical list of phrases in the first language, and the
remaining n lines are an alphabetical list of their translations into the second language. Only upper and
lower case alphabetic characters are used in the words. No input set will involve more than 25 distinct
words. No word appears as the first word in more than 10 phrases for any given language; likewise, no
word appears as the last word in more than 10 phrases. A line containing a single 0 follows the last
problem instance, indicating end of input.

Output

For each input set, output lines of the form

word1/word2

where word1 is a word in the first language and word2 is the translation of word1 into the second
language, and a slash separates the two. The output lines should be sorted according to the first
language words, and every first language word should occur exactly once. There should be no white
space in the output, apart from a single blank line separating the outputs from different input sets.
Imitate the format of the sample output, below. There is guaranteed to be a unique correct translation
corresponding to each input instance.



2004 East Central Regional Contest 11

Sample Input

4
arlo zym
flub pleve
pleve dourm
pleve zym
bus seat
bus stop
hot seat
school bus
2
iv otas
otas re
ec t
eg ec
0

Sample Output

arlo/hot
dourm/stop
flub/school
pleve/bus
zym/seat

iv/eg
otas/ec
re/t


